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Physics Department, University of Rome, 00100 Rome, Italy 
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Abstract. We investigate the dissipation mechanisms acting in a two-dimensional lattice 
gas automaton by inspecting the structure functions of the turbulent velocity field associated 
with the Boolean configuration of the automaton. In particular, we investigate whether 
the Boolean noise produced by the automaton can promote fractal structures within the 
flow. We show that this is not the case and the presence of the noise only results in a 
non-analyticity of the Row field which can be progressively eliminated upon averaging the 
boolean field on  coarser and coarser grids. As a result, we find that the non-fractal nature 
of homogeneous two-dimensional turbulence is not affected by the presence of the micro- 
scopic noise. 

It has been pointed out recently that lattice gas automata provide a valuable tool to 
simulate the Navier-Stokes equation and to study the influence of ‘noisy hydrody- 
namics’ on a turbulent flow. In a lattice gas ‘noisy hydrodynamics’ is intrinsically 
related to the fluctuations of the ‘Boolean molecules’ and consequently a detailed study 
of the dissipation mechanisms can be carried out. 

In this letter we address this topic with explicit reference to a two-dimensional 
turbulent flow. To this aim, we have simulated the two-dimensional Navier-Stokes 
equation with a 81922 FHP-111 lattice gas automaton [ l ,  21. The initial boolean field 
is a stochastic realisation of a 5122 spectral simulation of ZD decaying turbulence at 
t = 30 [3]. The simulation took about 70 megabytes of storage and 50 h CPU time on 
a single processor of the IBM 3090/200 with vector facility [4]; further details can be 
found in [ 5 ]  where a quantitative comparison is made between spectral and lattice gas 
simulation. 

In a fluid flow the dissipation is governed by the gradient of the velocity field 
u(x, t). Consequently, the quantities 

A,(X, 77)=(I~(x+x,Y+77)--v(x,Y)JP) (1) 

provide a quantitative indication on the way energy and enstrophy are transferred 
from large to short scales and there dissipated. The functions A,, usually referred to 
as structure functions, have been introduced to study the fractal and multifractal nature 
of turbulent flows [6]. For small values of the displacement r =  (x, 7 )  the quantity A, 
scales like and the behaviour of the coefficient a ( p )  as a function of p provides 
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a quantitative indication on the singularities of the flow field. For example, a linear 
law a ( p )  = p  indicates that the velocity field is differentiable at least once so that its 
gradient is not singular. 

It has been suggested that in a 3~ turbulent flow a. = a( p + 0) = 3 - DF where DF 
is the fractal dimension of the set where the gradient of U is singular. On the other 
hand, for a SD turbulent flow one can easily prove that a ( p) = p because of the following 
constraints [7]: 

(i) a is a convex function of p; 
(ii) a(3)  =3;  
(iii) a ( p ) ~ p .  
Constraint (iii) stems from the inequality A,(r) 4 Cr In r which has been proved 

analytically for the Euler equation [8] and can be readily extended to the viscous case. 
Since a ( p )  = p  the gradient of U is regular everywhere and dissipation is a smooth 
and homogeneous process all over the fluid flow. This amounts to saying that there 
is no intermittency of the velocity field at very small scales. As a result, there is a 
tendency to form coherent structures which dissipate vorticity at a very small rate [3]. 
In a lattice gas this need not be true because the Navier-Stokes equation does not 
include the ‘molecular’ noise which is naturally inherent to the Boolean gas. We argue 
that if the ‘molecular noise’ tends to generate fractal structures at the dissipation scale, 
large-scale coherent vortices might dissipate their vorticity at much higher rates than 
those pertaining to the ‘noiseless’ Navier-Stokes picture. Should this be the case, the 
time evolution of a large-scale field would be significantly affected by the noise. 

The quantities in (1) were obtained as spatial averages taken over the computational 
domain, a square box of size 27r, along various directions of the displacement vector 
r. We have computed a ( p )  both for the velocity field obtained by a direct integration 
of the Navier-Stokes equations and for the velocity field obtained by the lattice gas 
simulation. 

In the latter case, the macroscopic velocity field is obtained by mapping the 81922 
Boolean configuration onto a 5122 flow field in such a way that each velocity is made 
up of 16’ bits. The Boolean configurations refer to the evolution over 4 x 8192 time 
steps of the automaton which correspond to about 1.2 spectral time units. The structure 
function obtained by the spectral simulation is reported in the curve A of figure 1, 
while curves B and C refer to the velocity field obtained by the lattice gas simulation 
mapped onto a 5122 and a 128’ grid respectively. 

For curves A and B the function a displays a linear behaviour a = hp, although 
with distinct values of the slope h. For the spectral field (curve A) we find h - 1, as 
it must be according to the regularity constraints mentioned above, while for the lattice 
gas field (curve B) the coefficient h is of the order of 0.4. The picture emerging from 
these data seems quite clear and transparent except for the non-linear behaviour of 
curve C for p slightly above 1 which is somehow unexpected. As a first reaction, one 
is led to relate this non-linear behaviour to a lack of statistics which calls for further 
analysis. Along this line, we consider the statistical dispersion introduced by computing 
the spatial averages in (1) as discrete sums taken over a finite set of grid points. 
However, because these sums involve 128’ points, the corresponding statistical disper- 
sion is of the order of 1/ 128 - 0.0078 which is smaller than the deviation of curve C 
from the straight line followed at p < 1. A number of further refinements, such as a 
careful choice of the range of values of r used to evaluate the ratio In AJln r, were 
found to yield a statistical variance always well below 0.1 which is again too small for 
a linear behaviour to be recovered. As a result, we conclude that the possibility that 
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Figure 1. The curves a ( p )  for the spectral flow on a 5122 grid (A) and for the lattice gas 
flow mapped onto a 12S2 grid (C) and a 5122 grid (B).  

the bending of curve C is due to poor statistics has to be ruled out (we are indebted 
to one of the referees for focusing our attention on this point). 

A possible explanation of the deviation of curve C from a linear behaviour can be 
attempted in terms of the concept of the multifractal introduced by Frisch and Parisi 
[9]. These authors show that for a two-dimensional flow containing several singular 
scales one can write 

a( p) = minh( p h  + 2 - d (  h ) )  (2) 
where d ( h )  is the fractal dimension of the set s h  of the points such that A u ( r ) =  
u ( x +  r) - u ( x )  - rh. The above equation results from a saddle-point estimate of the 
quantity (AV’) -I dp(h)r’Ph+2-d(h)’ - ra(’) where p ( h )  is a measure concentrated in 
the region where d ( h ) > O  and r 2 - d ( h )  is the probability for a point to belong to the 
set s h  (for more details see Benzi et a/ [6]). From the equation (2) one can interpret 
curve C of figure 1 by assuming minh(2-d(h))=O, that is, a multifractal set with a 
fractal dimension of two. However, this is a kind of ‘special’ multifractal which results 
from the application of the averaging procedure to a field containing a significant 
amount of noise (we will come to this point again later on). In fact, for small values 
of p most of the statistical weight in the averaging procedure is given to the regular 
part of the field while for high p the role of the fluctuations becomes more and more 
relevant. Therefore, when filtering the noise out (which is precisely what we do by 
averaging) it is reasonable to expect that for small p the curve B tends ‘quicker’ to the 
analytical form than it does at high p, thereby causing the non-linear behaviour 
displayed by curve C. This is consistent with the quadratic best fit a = 0 . 8 4 ~  - 0 . 1 1 ~ ~  
we obtained for curve C. 

In any event, it is important to stress that as far as the main focus of this study is 
concerned, namely the limit of a ( p )  as p + 0, all the cases examined yielded the same 
result, i.e. a( p + 0) = 0 within two digits. Hence, we conclude that the gradient of the 
velocity field is singular but the set of the points where this singularity is concentrated 
has a fractal dimension of two, i.e. no fractal structure has emerged. 

To interpret this result, let us recall that the non-analyticity of the lattice gas field 
is related to the considerable amount of noisy energy contained in the short-scale 
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component of the spectrum (see figure 2). This noisy energy is in turn a manifestation 
of the fact that the paths traced by the pseudo-particles ('Boolean molecules') in the 
microscopic lattice are continuous but not differentiable. In other words, the pseudo- 
particles undergo a sort of random walk whose irregularities become more and more 
apparent as the spacing of the averaging grid is down-sized. It is therefore natural to 
represent the velocity field as the sum of a smooth component V and a fluctuating 
component 77 which results from the presence of the molecular noise. Hence, we write 
the velocity U as 

where the vector notation has been relaxed for the sake of simplicity. The amplitude 
of the fluctuations decreases with the square root of the number of bits/cell available 
to build up a single averaged velocity. This can be seen either by regarding U in the 
cell as the stochastic variable defined by the sum of n2 Boolean variables, or by 
regarding the noise 7) as the fast component of the field associated with the high- 
frequency part of the k spectrum. By averaging over a cell of size n (in units of the 
lattice gas spacing), one sets an outer cutoff k, = 27r /n  to the spectrum which regularises 
the behaviour of the field in real space. As a result, the structure functions can be 
written as: 

U =  V + T  (3)  

A,(r )  =(1SV(r)+S77(r)lP) (4) 
where S refers to the variation between two points a distance r apart. 

of the fluid flow. On the other hand 677 scales like 

where C - n-' and y is an unknown function which depends on the structure of the 
noise. 

The behaviour of the functions Ap is the result of the competition between the 
regular component V, which tends to produce Q = p ,  and the noisy component. If we 
assimilate the noise to a sort of fractional random walk [lo], it is legitimate to assume 

Since V is smooth, SV scales like Ar where A is proportional to the average gradient 

877 = W r )  ( 5 )  

. .. 
t l  ... / ..... 

Nu l l  field noise 

1 10 lo2 103 
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Figure 2. Energy spectrum E ( k )  of the automaton flow at the beginning (broken curve) 
and at the end (full curve) of the simulation. The dotted curve is the stochastic representa- 
tion of the null velocity field. 
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that y - rc  with c some exponent between zero and one. In this case the noise would 
tend to produce a law a - cp so that no possibility other than a ( p +  0) + 0, i.e. no 
fractal formation, would be left. On the other hand, at a macroscopic level the noise 
seems to give rise to a sort of fragmentation of the vorticity contours (see figure 3) 
which evokes a certain analogy with the eddy-fragmentation process assumed by the 
p model and its variants. 

Figure 3. ‘Coastlines’ of vorticity of the automaton at the end of the simulation. The figure 
is obtained by retaining only the smallest (wavenumber s 3 2 )  components of the harmonic 
analysis of the Boolean field. The contours are 2.5, 7.5, 15 (full curves) and -2.5, -7.5, 
-15  (dotted curves). 

The data shown in figure 1 indicate that even if this fragmentation process takes 
place, it is nonetheless space filling and consequently no fractal set can appear. 

In view of the preceding considerations we are led to the following picture of 
dissipation in the lattice gas. The energy of the macroscopic organised motion (vortices) 
is converted into chaotic motion (‘heat’) via interparticle collisions. The fragmentation 
process associated with this chaotic motion is, however, space filling and reflects the 
regularity of the large-scale configuration which promotes it. As a result, the emergence 
of fractal structures is inhibited and dissipation is still a homogeneous non-intermittent 
process like in a noiseless fluid theory. 

This provides a further non-trivial analogy between the behaviour of a lattice gas 
and the Navier-Stokes picture of a fluid flow. 
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